
Trilby Sample Firmware

Version 1.02
20 April 2016

Licensing Information
Copyright (c) 2005-2016 Kinetic Avionics Ltd
www.kinetic.co.uk

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Please Note
This document is not a tutorial. It assumes that the reader is familiar with the
principles and terminology of computer communications, digital signal
processing and/or programming in general.
In order to modify the firmware for your own purposes, you will also need to
install and be familiar with the Lattice Diamond software.

General Description
The sample firmware consists of a Lattice Diamond project with a top-level
schematic and several VHDL modules. These implement an example radio
receiver and also provide an Application Programming Interface (API) allowing
the user to read and write various internal control registers within the firmware.
By default the firmware flashes the Red LED once per second to indicate that it is
correctly running.
There is an I/O control module, which provides registers allowing the user to
configure the majority of the external connector pins as either inputs or outputs
and enable or override specific functionality associated with the pins (such as
SPI and I2C).
There is also a tuner control module, which initialises the tuner chip and can
then retune to a specified input (RF) frequency. The tuner is set up to give an
intermediate frequency (IF) of 6.1 MHz,

http://www.kinetic.co.uk/

The tuner input can be switched between the VHF/UHF antenna socket and the
HF antenna socket. When HF is selected, the signal is up-converted by mixing
with 96 MHz so that for example to receive a station at 25 MHz the tuner is set to
121 MHz.

Radio Receiver
A sample AM/FM mono radio receiver is included in the project. This can be used
to listen to AM, narrow band FM (e.g. marine channels) or wideband (broadcast)
FM stations, by connecting a suitable antenna and an audio output device.
The audio output device may be connected to the PWM audio output pins. Audio
amplification is not provided on the Trilby board, so an external audio amplifier
or suitable powered speakers will be required.
Alternatively digital audio is available to send to the Raspberry Pi using the SPI
interface. The audio device is then connected to the 3.5 mm audio jack socket on
the Raspberry Pi and suitable software must be running on the Raspberry Pi to
handle the audio data. The ttune tuning utility (see below) has an option for
producing this audio output using the Raspberry Pi’s playback channel. Please
ensure that the appropriate audio device (PWM or HDMI) is selected on the Pi -
The raspi-config utility can be used for this.

Technical Overview of the Radio Receiver’s Operation
The RF output from tuner is sampled at 24MHz using the Analog to Digital
Converter chip (ADC). The digital data is read in by the firmware and contains
the 6.1 MHz IF signal. However for narrow band reception, the tuning is offset by
25kHz so that the desired carrier is at 6.125 MHz. This signal is mixed with a 6
MHz quadrature square wave to yield I and Q data, which is then passed through
two decimating low pass filters to reduce the sample rate to 960 kHz (for wide
band) or 480 kHz for narrow band. Then the data is low-pass filtered again and
mixed with either 240 or 120 kHz for image rejection, and there is a band pass
channel filter (140 kHz for wide band, 45 kHz for narrow band) before the
demodulator. Finally there is an audio low-pass filter before the data is pulse-
width modulated (PWM) at 48 kHz to drive the audio output pins, and is also
made available in digital form to the Raspberry Pi interface.

Tuning the Radio

The tuner frequency can be changed using one of the control interfaces (SPI, I2C
or Serial) as described in the API document. For convenience, a sample
Raspberry Pi command line application (ttune) is provided which does this using
the SPI interface. The C source code for this application is also supplied as a
NetBeans project, and requires the bcm2835 library to be installed.

The command line usage is:

ttune [options] n

where n is the frequency in kHz.

The options available are:
-a Selects AM demodulation

-n Selects narrow band FM demodulation (the default)
-w Selects wide band FM demodulation
-h Selects the HF antenna
-v Selects the VHF/UHF antenna (the default)
-s Turns on audio playback over the Raspberry Pi audio output device
-r Displays received signal strength (RSSI) information

Options can be combined, for example:
ttune –ws 93500
Tunes to 93.5 MHz wideband FM and outputs the sound

ttune –ah 909
selects the HF antenna and tunes to 909 kHz AM

Notes on building the firmware under Lattice Diamond

The sample firmware project as supplied can be loaded under Lattice Diamond
and built by right-clicking on Export Files on the Process tab and selecting Run.

The stand-alone Diamond programming utility can then be used to program the
resulting .BIT file directly into the FPGA using a USB lead. The .BIT file can be
found in the impl1 subfolder. Ensure that the jumpers are set correctly (J450
installed but not J451). Please also ensure that the FTDI drivers supplied by
Lattice are installed, the cable type is set to B (FTDI) within the programming
utility and that the programming delay is set to the maximum value (10).

To produce a VME file that can be uploaded from the Raspberry Pi, the
deployment tool provided by Lattice must be used. This can be launched from
the stand-alone programmer.

Tip: when modifying the project or starting a new project, ensure that the
Synplify Pro synthesis engine remains selected and that “Disable I/O insertion” is
set to True (to access this option, right click on Strategy1 in the file list and select
Edit). Also ensure that the correct Lattice part is selected for the project (LFE5U-
45F-6BG381).

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

